

Si14T

低功耗 14 通道电容触摸传感器

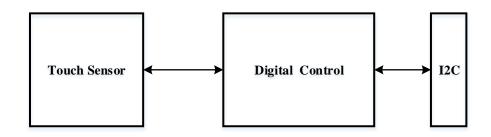
1. 介绍

Si14T 是一款具有自动灵敏度校准功能的 14 通道电容传感器,其工作电压范围为 1.8~5.0 V。

Si14T 设置休眠模式来节省功耗,此时,功耗电流为 3.5 μA @3.3 V。

Si14T 具有两种特殊功能:在通道 1 上的嵌入式电源键功能,可应用于移动手机;另外,芯片具有触摸暂停检测功能,通过 SCT 脚与 SI512/522/523 刷卡芯片配合,大大降低了误触发几率,非常适合智能门锁等应用。

I²C 串行接口可以检测触摸感应的结果,触摸强度可以被探测,分为低、中和高三种结果。

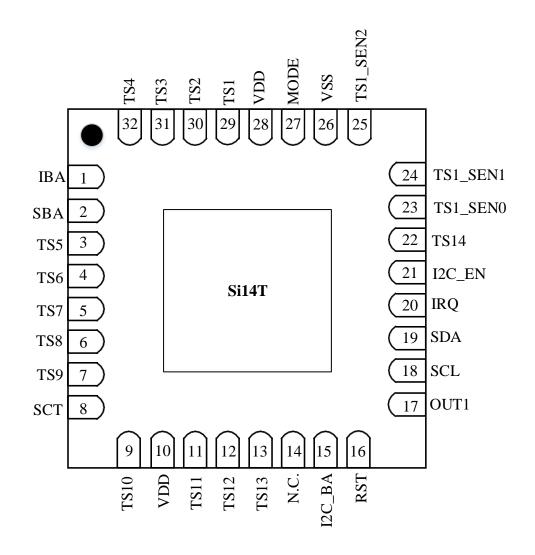

2. 特性

- ·上电复位
- .自动校准灵敏度功能的 14 通道电容传感器
- ·可选择的输出模式
- .外部触摸使能引脚 SCT
- ·8 种灵敏度独立可调
- ·通过外部电阻可调节内部频率
- ·支持 I2C 串行接口
- ·嵌入式高频率噪声消除电路

- ·工作模式下功耗电流 70 µA (@3.3 V)
- ·睡眠模式下功耗电流 3.5 µA (@3.3 V)

3. 芯片框图

Si14T 简化框图


4. 应用

- ·移动应用(手机/PDA/PMP等)
- ·薄膜开关
- ·控制面板,键盘
- ·门锁应用
- ·触摸屏幕应用

5. 管脚定义

Si14T 管脚封装示意图如下:

Si14T 管脚示意图

6. 管脚描述

序号	名字	I/O	描述	保护
1	IBA	模拟输入	内部偏压调整	VDD/GND
2	SBA	模拟输入	休眠模式下内部偏压调整	VDD/GND

3	TS5	模拟输入	触摸传感器 5 输入	VDD/GND
4	TS6	模拟输入	触摸传感器 6 输入	VDD/GND
5	TS7	模拟输入	触摸传感器7输入	VDD/GND
6	TS8	模拟输入	触摸传感器8输入	VDD/GND
7	TS9	模拟输入	触摸传感器9输入	VDD/GND
8	SCT	数字输入	触摸检测暂停控制(高电平暂停,0或者悬空工作)	VDD/GND
9	TS10	模拟输入	触摸传感器 10 输入	VDD/GND
10	VDD	数字输入	-	VDD/GND
11	TS11	模拟输入	触摸传感器 11 输入	VDD/GND
12	TS12	模拟输入	触摸传感器 12 输入	VDD/GND
13	TS13	模拟输入	触摸传感器 13 输入	VDD/GND
14	N.C.	-	悬空	-
15	I2C_BA	模拟输入	内部 I2C 时钟调整	VDD/GND
16	RST	数字输入	系统复位(高电平复位)	VDD/GND
17	OUT1	数字输出	通道1的输出(开漏)	VDD/GND
18	SCL	数字输入	I2C 时钟	VDD/GND
19	SDA	数字输入/输出	I2C 数据	VDD/GND

20	IRQ	数字输出	 中断输出(开漏) 	VDD/GND
21	I2C_EN	数字输入	I2C 使能(低有效)	VDD/GND
22	TS14	模拟输入	触摸传感器 14 输入	VDD/GND
23	TS1_SEN0	数字输入	TS1 灵敏度控制 0 位	VDD/GND
24	TS1_SEN1	数字输入	TS1 灵敏度控制 1 位	VDD/GND
25	TS1_SEN2	数字输入	TS1 灵敏度控制 2 位	VDD/GND
26	VSS	数字输入	-	VDD/GND
27	MODE	数字输入/输出	输出模式控制(高电平为单 通道输出,低电平为多通道 输出)	VDD/GND
28	VDD	电源	1.8V~5.0V	GND
29	TS1	模拟输入	触摸传感器 1 输入	VDD/GND
30	TS2	模拟输入	触摸传感器 2 输入	VDD/GND
31	TS3	模拟输入	触摸传感器3输入	VDD/GND
32	TS4	模拟输入	触摸传感器 4 输入	VDD/GND

7. 额定值

电池供电电压 5.0 V

任何 pin 上的最大电压 VDD+0.3

任何 PAD 上的最大电流 100 mA

耗散功率 800 mW

贮存温度 -50 ~150℃

8. 电气特性

 V_{DD} = 3.3 V,典型系统频率(除非特别标注), T_A = 25℃

表 1 主要参数指标

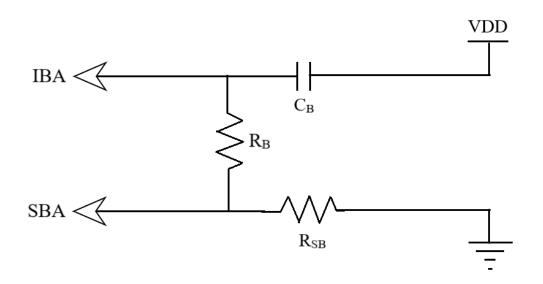
参数	符号		测试条件	最小值	典型值	最大值	单位
工作电压	$V_{ m DD}$			1.8	3.3	5.0	V
		$V_{DD}=3.3$	$V_{DD} = 3.3 \text{ V R}_{B} = 510 \text{ K R_SB=0}$		68	-	
		$V_{\rm DD} = 5.0$	0 V R _B = 510 K R_SB=0	-	145	-	
	${ m I}_{ m DD}$	Non-	$V_{DD} = 3.3 \text{ V R}_{B} = 510 \text{ K R_SB=6}$ M	-	3.5	-	μΑ
功耗电流[1]		Sensing	VDD = 5.0 V RB = 510 K R_SB=6 M		10.5	-	
	I _{DD_12} C	$V_{DD} = 3.3 \text{ V R}_{B} = 510 \text{ K R}_{I2C} = 20 \text{ k}$		-	0.4	-	A
		$V_{DD} = 5.0 \text{ V } R_B = 510 \text{ K } R_{I2C} = 20 \text{ k}$		-	0.7	-	mA
		IDD_I2C Disable		-	-	0.04	nA
输入感应电容范 围 ^[2]	Cs			-	10	110	pF
输入感应电阻范	Rs			-	200	2000	Ω

围						
最小检测电容差	ΔC	C _S = 10 pF, C _{DEG} = 200 pF (I2C 选择默认灵敏度)	0.2	-	1	pF
输出阻抗	Zo	ΔC > 0.2 pF(无法精确测量), Cs = 10 pF, (I2C 选择默认灵敏度)	-	71	1	Ω
(漏极开路)		ΔC < 0.2 pF(无法精确测量), C _S = 10 pF, (I2C 选择默认灵敏度)	-	41.25 M	1	3 22
复位后自校验时	TCAL	$V_{DD} = 3.3 \text{ V R}_{B} = 510 \text{ K}$	-	120	-	
间		$V_{DD} = 5.0 \text{ V R}_{B} = 510 \text{ K}$	-	98	-	ms
推荐偏置电阻范	R_{B}	$V_{DD} = 3.3 \text{ V}$	100	510	1500	VO.
围[3]		$V_{DD} = 5.0 \text{ V}$	100	510	1500	ΚΩ
最大偏置电容	C _{B_MAX}		-	820	1500	pF
推荐同步电阻范围	Rsync		0.91	2	20	ΜΩ

注: [1] SCL 频率为 500 kHz 时;

[2] 当 Cs 更低时, 灵敏度变高;

当使用 3T PC 覆盖层和 10 mm * 7 mm 触摸图形, 推荐 Cs 值是 10

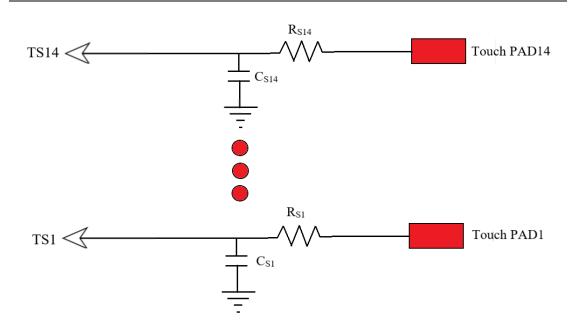


pF;

[3]在噪声情况下推荐 RB 值更低。

9. Si14T 实现

9.1 IBA 和 SBA 实现



IBA 连接到电阻来决定振荡器和内部偏置电流,因此,可以通过 R_B 来调节感应频率,内部时钟频率和功耗电流。IBA 上的电压波动可能导致严重的内部错误,因此建议将 C_B 连接至 VDD (非 GND)。(C_B 的典型值为 820 pF,最大值为 1.5 nF。)

当 Si14T 工作在休眠状态下,R_{SB} 应按照上图连接来节省功耗电流。在这种情况下,功耗取决于串行电阻的总和,并且响应时间可能会更长。

9.2 TS 实现

Si14T 大体上具有 8 种灵敏度,可通过 I²C 接口控制内部寄存器获得。并联电容 Cs1...Cs14 分别用来对 TS1...TS14 的灵敏度调节,随着 Cs 值的减小,灵敏度越高。内部每个通道的触摸判定彼此分离,因此,仅使用一个 Si14T 就可以设计 14 通道触摸键盘应用,而不会出现耦合问题。Rs 是串行连接电阻,用来避免外部电涌和 ESD 引起的故障,Rs 建议从 200 到 1 KΩ。PAD 的大小和形状可能会影响灵敏度,当 PAD 的大小约为第一个指节的一半时(约 10 mm * 7 mm),灵敏度将达到最佳。建议将 TS1~TS14 到触摸 PAD 的连接线尽可能短的布线,以防止由于连接线的原因引起的异常触摸检测。未使用的 CS 管脚必须接地,以防止在浮动 CS 管脚中发生不可预测的故障。


9.3 MODE 实现

这个管脚被指派为了实现选择输出模式,它将决定 Si14T 工作在单个还是 多个触摸检测模式,并且通过以下电路实现。

Single Output Mode Implementation

Multi Output Mode Implementation

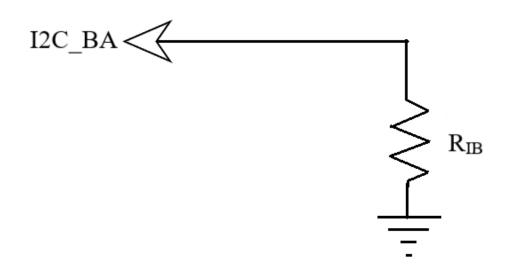
9.4 TS1 SEN0, TS1 SEN1, TS1 SEN2 实现

TS1_SEN0,1 和 2 仅控制 TS1 的灵敏度,如果 TS_SEN[2:0] = 011,通道 1 的敏感度也跟其他通道一样被寄存器控制,但如果不等于 011,其敏感度应该被下图所固定。

TC1 CEN -2.05	通	通道 1 的灵敏度(@Cs = 0 pF)					
TS1_SEN<2:0>	低	中	高				
011	由寄存	器值决定(参考 I ² C 寄存	器描述)				
000	0.35%	0.50%	0.65%				
001	0.50%	0.70%	0.90%				
010	0.60%	0.90%	1.20%				
100	1.05%	1.50%	2.00%				
101	1.40%	2.05%	2.65%				
110	1.80%	2.55%	3.30%				
111	2.45%	3.55%	4.65%				

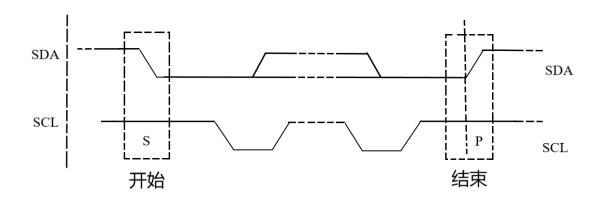
9.5 RST 实现

控制芯片的复位, 高电平复位。


9.6 SCT 实现

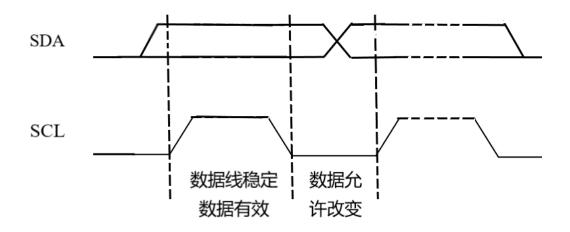
SCT 悬空或者接低电平正常工作;接高电平则暂停触摸功能。

10. I²C 接口


10.1 I2C_BA 实现

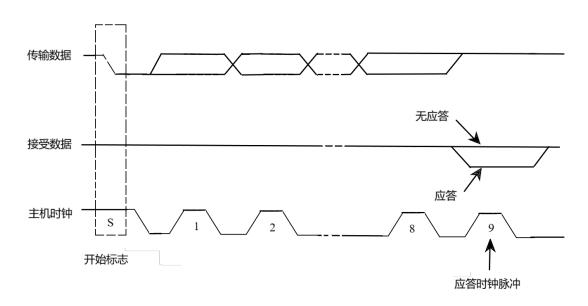
 R_{IB} 只控制 I^2C 内部时钟,且通过以上电路实现。 R_{IB} 越小, I^2C 的内部时钟 频率和功耗电流越大。

10.2 开始和结束情况


- 开始(S)
- 结束(P)
- 重新开始(Sr)

10.3 数据有效性

当 SCL 为高时, SDA 稳定, SCL 为低, SDA 可以改变。



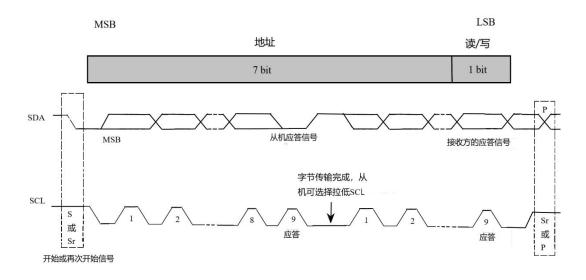
10.4 字节格式

字节结构由 8 bit 数据和一个应答信号组成。

10.5 应答

应答信号检测接收方接受发送方的数据是否正确,如果正确,接受方写"0",反之,写"1"。

10.6 第一个字节



10.6.1 从机地址

从机地址时开始位后的第一个字节,它被用来访问从机设备,其为0b1101000X。"X"表示读写控制位。

10.6.2 R/ W

这个 bit 决定数据的传输方向,它跟着地址数据。

10.7 传输数据

10.7.1 写操作

字节序列如下:

- 第一个字节给出设备地址和方向位(R/W=0);
- 第二个字节包含要访问的第一个寄存器的内部地址;
- 下一个字节写入内部寄存器,随后的字节写入后续的内部寄存器中;
- 直到遇到停止信号传输结束;
- SI14T 确认每个字节传输。

S	设备 地址 读(1)/写(0)	A	数据 1	A	0 0 0	数据 n	Ā	P
---	--------------------	---	------	---	-------	------	---	---

注: 阴影部分由主机传送到从机; 空白部分由从机传送到主机;

A = 无应答(SDA 拉高); A = 应答(SDA 拉低); S = 开始信号。

10.7.2 读操作

在没有数据的写操作中编程读取第一个寄存器的地址,并以收到停止条件终止。然后,另一个起始位后面跟着设备地址和 R/W=1。之后,所有的后续字节都要从起始地址开始连续读取数据。

S	设备 地址	读(1)/写(0)	A	数据 1	A	0 0 0	数据 n	Ā	P	
---	-------	-----------	---	------	---	-------	------	---	---	--

10.7.3 读/写操作

S	设备 地址	读/写	A	n 字节数据 +应答	Sr	设备 地址	读/写	A	n 字节数据 +应答	P	
---	-------	-----	---	---------------	----	-------	-----	---	---------------	---	--

10.8 在正常模式下 I²C 读写操作

下图表示正常模式下 I2C 写和读寄存器

● 数据 AA 和 BB 写入寄存器 0x00 到 0x01

S	设备地址 0x48	应答	寄存器地址 0x00	应答	AA	应答	BB	应答	P
---	-----------	----	------------	----	----	----	----	----	---

● 读寄存器 0x00 到 0x01

S 设备地址 0x48	应答	寄存器地址 0x00	应答	P
-------------	----	------------	----	---

S	设备地址 0x49	应答	读数据 AA	应答	读数据 BB	无应答	P
---	-----------	----	--------	----	--------	-----	---

11. SI14T 控制寄存器列表

注 1: I²C 寄存器中未使用的 bit 位 (定义为保留位) 必须保持位 0;

注 2: HS(高灵敏度)/MS(中灵敏度)/LS(低灵敏度);

注 3: Low Output (轻触) /Middle Output (中触) /High Output (高触) 。

11.1 I2C 寄存器映射

名称	地址	复位值			右	个字节	的 bit 名称				
石が	(Hex)	(Bin)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SEN1	02h	1011 1011	Ch2HL	Ch2M		Ch1HL	Ch1M				
SEN2	03h	1011 1011	Ch4HL		Ch4M		Ch3HL		Ch3M		
SEN3	04h	1011 1011	Ch6HL		Ch6M		Ch5HL	Ch5M			
SEN4	05h	1011 1011	Ch8HL		Ch8M		Ch7HL	Ch7M			
SEN5	06h	1011 1011	Ch10HL		Ch10M		Ch9HL		Ch9M		
SEN6	07h	1011 1011	Ch12HL		Ch12M		Ch11HL	(Ch11M		
SEN7	22h	1011 1011	Ch14HL	Ch14M		Ch13HL	(Ch13M			
CFIG	08h	0010 0010	MS	FTC[1:0] ILC		C[1:0]	RTC[2:0				
CTRL	09h	0000 01XX	0	0	0	0	SRST	SLEEP	1	1	
Ref_upd1	0Ah	1111 1110	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Ref_upd2	0Bh	0011 1111	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9	
Ch_on1	0Ch	1111 1110	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Ch_on2	0Dh	0011 1111	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9	
Cal_on1	0Eh	0000 0000	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1	
Cal_on2	0Fh	0000 0000	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9	
Output1	10h	0000 0000	OUT	4	OU	T3	OU'	Т2	OU	T1	
Output2	11h	0000 0000	OUT	8	OU	T7	OU'	Т6	OU	T5	
Output3	12h	0000 0000	OUT	12	OU	T11	OUT	710	OU	OUT9	
Output4	13h	0000 0000	0		()	OUT	714	OU'	T13	

11.2 详细描述

11.2.1 灵敏度控制寄存器

类型: R/W

地址	寄存器名	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
02h	SEN1	Ch2HL	Ch2M			Ch1HL	Ch1M		
03h	SEN2	Ch4HL	Ch4M			Ch3HL		Ch3M	
04h	SEN3	Ch6HL	Ch6M			Ch5HL		Ch5M	

05h	SEN4	Ch8HL	Ch8M	Ch7HL	Ch7M
06h	SEN5	Ch10HL	Ch10M	Ch9HL	Ch9M
07h	SEN6	Ch12HL	Ch12M	Ch11HL	Ch11M
22h	SEN7	Ch14HL	Ch14M	Ch13HL	Ch13M

描述:

通道 1~14 的灵敏度可通过 SEN1~ SEN7 寄存器调节。ChxM[2:0]允许不同的中等灵敏度,并且高低灵敏度由 ChxHL 决定。

Bit 名称	复位值	功能						
ChxM[2:0]	011		00 : 1.50% 01 : 2.05%					
			10 : 2.55.% 11 : 3.55%					
		通道 x 选择高低灵敏度 0	1					
	1	低灵敏度 高灵敏度	低灵敏度 高灵敏度					
		♦ 000 : 0.40% ♦ 000 : 0.60%	♦ 000 : 0.35% ♦ 000 : 0.65%					
ChxHL		\$\displaysquare\$ 001 : 0.85% \$\displaysquare\$ 010 : 0.70% \$\displaysquare\$ 010 : 1.10%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		◊ 011 : 0.95% ◊ 011 : 1.45%	◊011 : 0.85% ◊011 : 1.60%					
		♦ 100 : 1.20% ♦ 100 : 1.85%	♦ 100 : 1.05% ♦ 100 : 2.00%					
		◊ 101 : 1.60% ◊ 101 : 2.45% ◊ 110 : 2.05% ◊ 110 : 3.05%	♦ 101 : 1.40%					
		♦ 111 : 2.85% ♦ 111 : 4.30%	♦ 110 : 1.80% ♦ 110 : 3.30% ♦ 111 : 2.45% ♦ 111 : 4.65%					

11.2.2 通用配置寄存器

类型: R/W

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
08h	CFIG	MS	FTC	FTC[1:0]		1:0]	F	RTC[2:0]]

描述:

上电复位后的校准速度在 FTC [1:0]定义的时间内非常高,可以很好地应对不稳定的外部环境。

Bit 名称	复位值	功能
MS	0	模式选择

		0 : 自动选择(快/慢)模式 1 : 快模式
		第一次触摸控制
	01	00 : 5 sec
FTC[1:0]		01 : 10 sec
		10 : 15 sec
		11 : 20 sec
		中断水平控制
		00:中断在中或高输出
H C[1.0]	00	01:中断在低中高输出
ILC[1:0]	00	10: 中断在中或高输出
		11: 中断在高输出
		注: 低中高分别为对应通道 output 的输出强度
DTC[2.0]	011	响应时间控制
RTC[2:0]	011	响应周期 = RTC[2:0] + 2

11.2.3 通用控制寄存器

类型: R/W

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
09h	CTRL	0	0	0	0	SRST	SLEEP	1	1

描述:

当设置 SRST 后,除模拟和 I²C 模块外的所有数字模块均会复位。 当设置 为休眠模式后,功耗电流变得非常低,但响应时间将比正常操作更长。

Bit 名称	复位值	功能
		软件复位
SRST	0	0: 不使能软件复位
		1: 使能软件复位
		睡眠模式使能
SLEEP	1	0: 不使能睡眠模式
		1: 使能睡眠模式

11.2.4 通道参考值复位控制寄存器

类型: R/W

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Ah	Ref_rst1	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

0Bh	Ref_rst2	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9

描述:

当设置 Chx 后,每个通道的参考值将被更新。

Bit 名称	复位值	功能				
Ch1	0	0:不使能参考值复位				
		1: 使能参考值复位				
Ch2~Ch14	1	0: 不使能参考值复位				
Cli2~Cli14	1	1: 使能参考值模式				

11.2.5 通道感应控制寄存器

类型: R/W

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Ch	Ch_on1	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1
0Dh	Ch_on2	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9

描述:

每个通道的操作均可独立控制。 当设置某一通道不使能后,对应通道将无法工作,并且校准会暂停。

Bit 名称	复位值	功能		
Ch1	0	0: 使能操作(感应+校准)		
	U	1:保持操作(不感应+停止校准)		
Ch2~Ch14	1	0: 使能操作(感应+校准)		
	1	1:保持操作(不感应+停止校准)		

11.2.6 通道校准控制寄存器

类型: R/W

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Eh	Cal_on1	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1
0Fh	Cal_on2	0	0	Ch14	Ch13	Ch12	Ch11	Ch10	Ch9

描述:

每个通道的校准均可独立控制。 即使设置一个通道不使能,每个通道仍在工作

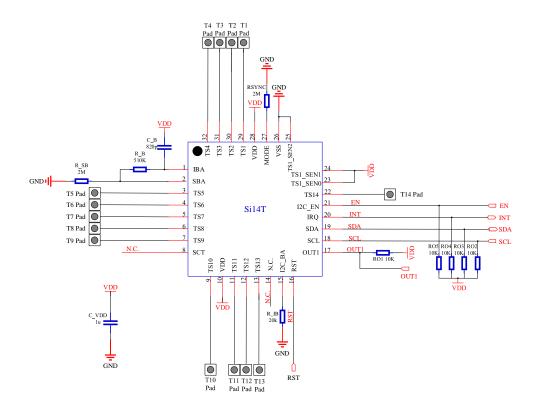
Bit 名称	复位值	功能
Ch1~Ch14	0	0: 使能参考值校准(感应+校准) 1: 不使能参考值校准(感应+不校准)

12.2.7 输出寄存器

类型: R

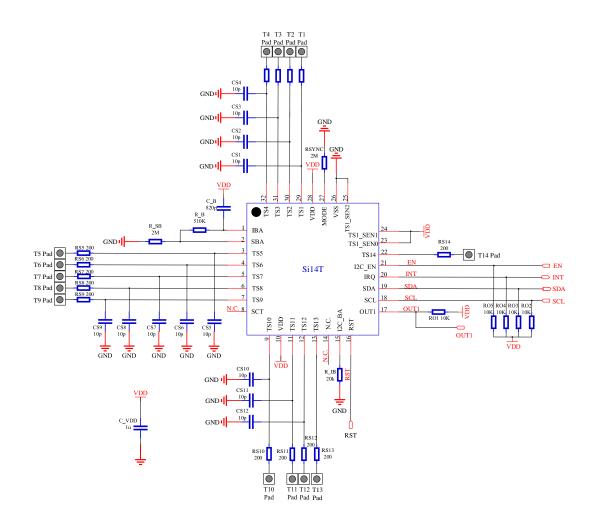
地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
10h	output1	OUT4[1:0]		OUT3[1:0]		OUT2[1:0]		OUT1[1:0]	
11h	output2	OUT8[1:0]		OUT7[1:0]		OUT6[1:0]		OUT5[1:0]	
12h	output3	OUT12[1:0]		OUT11[1:0]		OUT10[1:0]		OUT9[1:0]	
13h	output4	0		0		OUT14[1:0]		OUT13[1:0]	

描述:

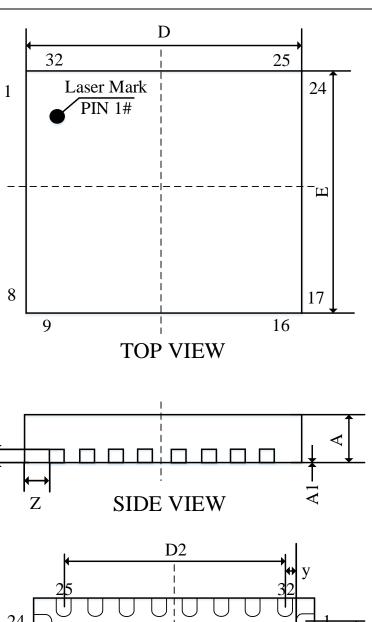

Si14T 的每个通道输出被压缩成 2bits 表示,并且具有低,中,高三种等级的输出信息

Bit 名称	复位值	功能
		通道输出
OUT1[1:0]		00 : 无输出
~	00	01: 低输出
OUT14[1:0]		10: 中输出
		11: 高输出

12.典型应用原理图



12.1 在无噪声环境下的应用原理图




12.2 在噪声环境下的应用原理图

13.封装尺寸

封装尺寸表

符号		单位 (毫米)				
ा । 	MIN	NOM	MAX			
D	4.90	5.00	5.10			
E	4.90	5.00	5.10			
D2	3.40	3.50	3.60			
E2	3.40	3.50	3.60			
A	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3		0.203 REF				
В	0.20	0.25	0.30			
e		0.50 BSC				
L	0.33	0.38	0.43			
y		0.38 REF				
Z		0.625 REF				

14.修改记录

版本	修改日期	修改内容	修改人员
V0.1	2020/10/12	初稿	DG Group

15. 联系方式

深圳市动能世纪科技有限公司

官网:www.dnsj88.com 电话:0755-82539044

邮箱: DNSJ@-DN-IC.COM

华强总部:深圳市福田区振中路与中航路交汇处

新亚洲国利大厦1139-1142室

南山分部:深圳市南山区沙河西路深圳湾

科技生态园6栋5楼519室